РАЗРАБОТКИ
|
Методические рекомендации для подготовки учащихся 5-6 классов к математическим олимпиадам (из опыта работы)Одной из важных целей проведения олимпиад является развитие интереса учащихся к математике, привлечение учащихся к занятиям в математических кружках. Олимпиады способствуют выявлению и развитию математических способностей учащихся. Подбор материала для кружковой работы и для олимпиад является одной из форм активной работы учителя по повышению своей научно-методической квалификации. Обучая математике, учитель обучает учащихся решению задач. Все задачи школьного курса можно разделить на два вида: стандартные и нестандартные. Для решения стандартных задач требуется лишь умение работать «по образцу», знание определенного алгоритма. Хороший результат достигается при тренировке в решении однотипных упражнений. Некоторые задачи трудно отнести к какому-либо определенному типу. Как организовать обучение решению нестандартных задач, как правильно подобрать необходимый материал, как помочь ученику выработать собственный метод решения таких задач? Вот вопросы, которые приходится решать учителю для подготовки своих учеников к различным математическим конкурсам и олимпиадам. Начиная дополнительные занятия по математике, несомненно, нужно начать с истории математических олимпиад. Олимпиады возникли в Древней Греции как состязание в ловкости, силе, красоте. Первая олимпиада состоялась в 776 г. до н.э. Олимпиады проводились в Олимпиии один раз в четыре года вплоть до 394 г.н.э., когда были запрещены в связи с распространением христианства. Вновь олимпиады возродились в 1896 г. Различного рода состязания проводились не только в спорте. Хорошо известна любовь к состязаниям в решении задач, как на Руси, так и во многих других станах мира. Математические соревнования по решению задач также называются олимпиадами, хотя они проводятся с периодом не в четыре года, а ежегодно. В России конкурсы по решению задач начали проводиться с 1886 года. Обучение решению конкретных задач должно помочь ученику не только приобрести необходимый опыт, но и выработать собственные приемы, которые будут позволять ему решать незнакомые задачи. Подготовка к конкурсам может быть успешной, если она будет способствовать развитию интереса ученика и в этом большую роль имеет подбор задач. Каждый учитель, учитывая собственный опыт и особенности класса, подбирает необходимые задания. Задачи на переливания жидкостей 1. Как, имея пятилитровую банку и девятилитровое ведро, набрать из реки ровно три литра воды? Решение таких задач удобно показывать в таблице: 2. Как из восьмилитрового ведра, наполненного молоком, отлить 1 л с помощью трехлитровой банки и пятилитрового бидона? Логические задачи 1. В соревнованиях по гимнастике Нина, Зина, Валя и Галя заняли четыре первых места. Известно, что Зина выступила хуже Нины, Галя заняла место сразу за Ниной, а Валя выступила ни хуже, ни лучше остальных. Какое место заняла каждая девочка? Решение: Первое место заняла Нина, так как Валя не заняла ни первого, ни последнего места, а Галя и Зина оказались ниже Нины. Значит девочки заняли места в следующем порядке: Нина, Галя, Валя, Зина. 2. На улице, став в кружок, беседуют четыре девочки: Аня, Валя, Галя и Надя. Девочка в зеленом платье ( не Аня и не Валя) стоит между девочкой в голубом и Надей. Девочка в белом платье стоит между девочкой в розовом платье и Валей. Платье какого цвета носит каждая из девочек и в каком порядке они стоят?
Задачи на применение признаков делимости 1. К числу 52 приписать справа и слева по одной цифре так, чтобы получилось число, делящееся на 45. Решение: если число делится на 45, то оно делится на 5 и на 9. Число делится на 5 тогда и только тогда, когда оно оканчивается либо на 0, либо на 5. Число делится на 9 тогда и только тогда , когда сумма цифр его делится на 9. Теперь приходим к двум решениям задачи: 2520 и 6525. 2. Не выполняя деления, докажи, что число 7920 делится на 60. По признакам делимости 7920 делится на 3, 4 и 5. Значит, оно делится на 3∙4∙5 = 60 3. Какое число при делении на 23 дает в остатке в семь раз больше, чем в частном? Решение: Так как остаток в 7 раз больше частного, то он делится на 7. В то же время при делении на 23 остаток не превышает 22. Этим двум условиям относительно остатка удовлетворяют числа: 7, 14, 21. Тогда для частного получим соответственно числа: 1, 2, 3. Таким образом, задача имеет три решения: 1) 23∙1+7=30 2) 23∙2+14=60 3) 23∙3+21=90 Задачи на движение 1. Два летчика вылетели одновременно из одного города в два различных пункта. Кто из них долетит до места назначения быстрее, если первому из них нужно пролететь вдвое большее расстояние, но зато он летит в два раза быстрее, чем второй? Решение: Так как скорость первого самолета в два раза больше, чем второго, то за одно и то же время он пролетит расстояние в два раза большее, чем второй, а ему и надо пролететь в два раза больше. Значит, они прилетят одновременно. 2. Два Муравья отправились в гости к Стрекозе. Один, всю дорогу прополз, а второй первую половину пути ехал на Гусенице, что было в два раза медленнее, чем ползти, а вторую половину скакал на Кузнечике, что было в 10 раз быстрее. Какой Муравей первым приедет в гости, если они вышли одновременно? Решение: Пока второй Муравей ехал на Гусенице, первый уже добрался до места. (Второй проехал на Гусенице полпути, а первый в это время полз в два раза быстрее и, следовательно, прополз весь путь) 3. Мотоциклист выехал из города А в город В. Если он будет ехать со скоростью 50 км/ч, то приедет в В на час раньше назначенного срока. Если же будет ехать со скоростью 35 км/ч, то опоздает на 2 часа. Найти расстояние между городами А и В. Решение: Пусть АВ = х. Тогда х:50+1=х:35-2 х=350 Ответ: АВ=350 км. Решение таких нестандартных задач может быть не только на дополнительных занятиях, задачи должны и на обычных уроках. Если такая работа ведется систематически, то она несомненно приводит к хорошим результатам. Конкурс решения задач может содержать самостоятельное решение дома с постоянным подведением итогов, например, каждую неделю или месяц. Что так же способствует развитию интереса обучающихся и желанию заниматься математикой. Как показывает опыт, интерес к математике у школьников возрастает, повышается активность на уроках, они перестают бояться незнакомых задач и активно участвуют в различных конкурсах и олимпиадах. Информационные ресурсы:
Автор:
Всего комментариев: 0
Новые статьи
Игровое спортивное мероприятие «Здравствуй, Зимушка-зима» Важность моторного планирования у младших школьников Формирование ключевых компетенций в процессе обучения математике Приемы активизации познавательной и творческой деятельности обучающихся на уроках математики Наставничество как важная часть воспитательного процесса классного руководителя Последние новости образования
Оценивание ОГЭ может быть переведено на 100-балльную систему Сергей Кравцов представил проект расходов по госпрограмме «Развитие образования» на 2025-2027 годы В России предложили ввести штрафы за оскорбление учителей Примерный календарный план воспитательной работы на 2024-2025 учебный год В помощь учителю
Уважаемые коллеги! Опубликуйте свою педагогическую статью или сценарий мероприятия на Учительском портале и получите свидетельство о публикации методического материала в международном СМИ. Для добавления статьи на портал необходимо зарегистрироваться.
|
Конкурсы
Диплом и справка о публикации каждому участнику! Лучшие статьи
О мотивах учения и как выработать мотивацию к учёбе Как побороть подростковую агрессию Поддержка ребёнка — важный инструмент в работе учителя Наставничество как важная часть воспитательного процесса классного руководителя |
© 2007 - 2024 Сообщество учителей-предметников "Учительский портал"
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель / главный редактор: Никитенко Е.И.
Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание этих материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.
Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.
Фотографии предоставлены