РАЗРАБОТКИ
|
Поисковая деятельность учащихся на уроках математики при работе с уравнениямиПоисковая деятельность учащихся на уроках математики при работе с уравнениями. Учитель: Егорова Ольга Леонидовна
Работа по решению уравнений на уроке математики помогает осознать взаимосвязи между компонентами действий, освоить различные способы вычислений, ознакомиться с математическими свойствами и законами, решать задачи. 1. Первое знакомство с уравнениями происходит при изучении темы "Сложение и вычитание" в качестве особых равенств для уяснения взаимосвязи между компонентами действий. Поиск начинаю вести с наблюдения за равенствами:
Выделение неверного равенства 5+2=6 позволяет формировать и практические умения в выполнении математических действий, и теоретические знания о верных и неверных равенствах, компонентах действий. В верных равенствах устанавливается взаимосвязь между действиями сложения и вычитания. Выясняем, что превращение неверного равенства в верное возможно несколькими способами:
Способ подбора при помощи натурального ряда чисел в дальнейшем определит и первый способ решения уравнений.
Даже на начальном этапе знакомства с уравнениями последняя запись, получившаяся у детей, не вызывает затруднений в прочтении и последовательном выполнении получившегося действия, основанном на понимании смысла сложения, отработке навыка сложения, когда выражение заменяется его значением. Остальные же равенства не дают возможность оценить его верность или неверность при отсутствии одного из компонентов. В дальнейшем различение этих действий помогут детям решать некоторые усложненные уравнения, упрощая их или усложняя простые:
- Какое выражение в уравнении можно заменить его значением?
Какой компонент уравнения можно заменить математическим выражением? Введение букв латинского алфавита для обозначения неизвестного числа поможет осознать смысл решения уравнения, его отличия от числовых выражений. Есть ли среди равенств уравнения?
Для лучшего осознания взаимосвязи между компонентами действий учащиеся пытаются найти недостающий компонент уравнения так, чтобы уравнение имело смысл:
Использование таблицы сложения для вычитания на основе взаимосвязи компонентов этих действий позволяет ученикам начать осваивать основной способ решения уравнений уже на начальном этапе. Например, составление уравнений, связанных с данными:
2. Впоследствии учащимся встречается все больше уравнений, содержащих 2-3 действия, решение которых также происходит на основе взаимосвязей между компонентами математических действий. Знакомство учащихся с математическими законами: сочетательным, переместительным, распределительным; основными свойствами равенств дает возможность поиска учащимися пути преобразования, который позволит из более сложного уравнения получить более простое.
Сравнение усложненного уравнения с более простым помогает установить, в чем заключается усложнение. Тогда и начинается поиск пути упрощения и решения уравнения. Когда ученики будут знакомы с правилами установления порядка действий разных ступеней, они смогут не только определять, каким компонентом действия является неизвестное число, но и на каком этапе целесообразно подойти к его нахождению.
Неизвестное число входит в состав произведения - действия 2-ой ступени. Его значение увеличивается на 92 в левой части уравнения. При использовании 1-ого свойства равенств уравнение приобретает вид:
Позже, когда между двумя множителями - конкретным числом и неизвестным - знак умножения не ставится, можно вернуться к пути решения на основе взаимосвязи компонентов действий:
Когда первое слагаемое, выраженное произведением, находится вычитанием значения суммы и второго слагаемого. Цель решения усложненных уравнений на данном этапе - нахождение различных путей упрощения. Упражнения для наблюдения, сравнения и умозаключений поможет в формировании гибкого подхода к решению любого усложненного уравнения: 1) Найти правильный вариант решения уравнения, объяснить. х : ... = ... А) х =... - ...
3) В каких уравнениях можно найти неизвестное число, не выполняя действий?
4) Не решая, определить уравнения с одинаковым корнем:
5)Найди уравнения, где надо найти неизвестное уменьшаемое:
6) Сравни:
7) Сравни:
8) Вычисли: 2·(3+7) разными способами (в том числе с помощью распределительного закона умножения). Таким образом, к концу обучения в начальной школе 87,5% учащихся верно решают усложненные уравнения. Из них 58% учащихся - несколькими способами. 3. При решении задач ученики часто выбирают способ составления уравнений. Жизненная ситуация, заложенная в условии задачи, приводит к конкретному конечному результату. В тех случаях, когда этот результат является не искомым, а данным, логично и удобно записать условие задачи в виде уравнения. Искомое число также содержится в условии. Часто о нем говорится "несколько", что помогает ученикам быстро его выделить. Дети с интересом меняют конструкцию задачи, чтобы быстрее обнаружить искомое:
Задача приобретает вид:
Решение уравнения сводится к нахождению неизвестного множителя, а умение находить неизвестный компонент умножения, деления, сложения и вычитания отрабатывается на решении простых уравнений с первого класса. Простая задача также может быть записана уравнением:
Одно и то же условие, но по-разному записанное, позволяет более слабым учащимся понять смысл задачи, увидеть последовательность происходящих событий, понять взаимосвязь между данными и искомым и даже составить план решения: неизвестное уменьшаемое находим сложением
Планируя на уроке работу с задачей, решаемой уравнением, можно предложить детям несколько текстов задач:
В задачах дети сравнивают условия, вопросы. Выясняем, какая из задач может быть записана и решена уравнением. Это та задача, в вопросе которой речь идет о каком-либо компоненте действия, а не о результате действия. При проверке умения решать составные задачи 88% учеников справились с решением. 48% учащихся выбрали арифметический способ. 52% учащихся - алгебраический. Во втором случае ошибок допущено не было. Составленные уравнения были разных видов. Причем дети находят сразу несколько вариантов составления. Не все задачи могут быть решены арифметическим способом. В условиях таких задач недостаточно данных для такого способа решения:
Вопрос такой задачи позволяет выбрать привычный арифметический способ решения. Работа с задачами, решаемыми уравнением, позволяет учащимся лучше усвоить взаимосвязи между величинами, понимать и составлять формулы, пользоваться теоретическими знаниями, чувствовать уверенность в успехе.
Всего комментариев: 0
Последние новости образования
Владимир Путин предложил вернуть оценки за поведение в школах Оценивание ОГЭ может быть переведено на 100-балльную систему Сергей Кравцов представил проект расходов по госпрограмме «Развитие образования» на 2025-2027 годы В России предложили ввести штрафы за оскорбление учителей Примерный календарный план воспитательной работы на 2024-2025 учебный год В помощь учителю
Уважаемые коллеги! Опубликуйте свою педагогическую статью или сценарий мероприятия на Учительском портале и получите свидетельство о публикации методического материала в международном СМИ. Для добавления статьи на портал необходимо зарегистрироваться.
|
Конкурсы
Диплом и справка о публикации каждому участнику! Лучшие статьи
Гиперфиксация как помощь в обучении детей с расстройствами аутистического спектра Формирование функциональной грамотности через игровую деятельность у обучающихся начальных классов Преемственность начального и основного общего образования в свете требований ФГОС |
© 2007 - 2024 Сообщество учителей-предметников "Учительский портал"
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель / главный редактор: Никитенко Е.И.
Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание этих материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.
Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.
Фотографии предоставлены